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Before we are going to start with a more detailed review of this paper, dealing with a complex and highly
fascinating topic at the interface on foundations of quantum mechanics, operator theory and operator
algebras, philosophy and logics, we firstly shed somewhat light on the background of the underlying main
subject to get a better understanding of the content of the paper under review.
One of the most controversial discussions in quantum theory is the one of so called “hidden variables”;
that is, the question of whether in principle it is possible to describe quantum statistics by means of
classical probability theory in the sense of A. Kolmogorov. The first attempt to prove the impossibility of
the existence of hidden variables in quantum theory was made by J. von Neumann. In 1966, J. Bell, by
analysing the Einstein-Podolski-Rosen paradox, showed the incompleteness of von Neumann’s “proof”.
Von Neumann’s argumentation builds on the assumption that physical reality is “non-contextual” (i.e.,
independent of the measurement arrangement). Bell analysed a further fundamental property of the
quantum-mechanical description, known as “nonseparability” (of states). Mathematically it is related
to the superposition principle and to the fact that combined quantum systems are described by tensor
products rather than by cartesian products of classical Kolmogorovian probability theory.
Many of these still ongoing discussions concentrate on the implications of the accepted fact that under the
assumption that any impact of a subsystem towards a spatially distant subsystem cannot be transmitted
faster than light (the so called “Principle of Locality”) the von Neumann model of quantum mechanics
is an incomplete theory which cannot be completed due to the introduction of “hidden variables”. If such
a completion was possible the assumed Principle of Locality would then imply that the von Neumann
model of quantum mechanics can be extended to a framework where one could allocate concretely defined
values to all observables – independent of the process of measurement, implying that they would be jointly
measurable on a single classical Kolmogorovian probability space on which “hidden variables” emerge as
related random variables, implying a so called “local realism”. But then all observables (represented
by possibly unbounded linear operators on a Hilbert space in the von Neumann model) already would
commute which obviously would lead to a contradiction.
Moreover, it is also experimentally verified that such entangled composite quantum systems violate certain
relations between correlations – known as “Bell’s inequalities”. Purely in terms of of a very elementary
application of classical Kolmogorovian probability theory – and completely independent of any modelling
assumptions in physics – Bell’s inequalities can be represented in form of an inequality originating from
[J. F. Clauser et al., Rev. Lett. 23, No. 15, 880–883 (1969; Zbl 1371.81014); erratum ibid. 24, No. 10, 549
(1970)]:
BCHSH Inequality. Let (Ω,F) be an arbitrary measurable space. Let X1, X2, X3 and X4 be arbitrary
bounded random variables with values in [−1, 1], all defined on (Ω,F). Then

|EP[X1X2]− EP[X1X3]| ≤ 1− EP[X2X3]

for all probability measures P on (Ω,F). In particular,

|EP[X1X2]− EP[X1X3] + EP[X4X2] + EP[X4X3]| ≤ 2 ,

for all probability measures P on (Ω,F).
To see one significant implication of the BCHSH inequality, assume that there are three measurable
spaces (Ωi,Fi) (i = 1, 2, 3) and three bounded random variables Xi : Ωi −→ [−1, 1]. Let us consider three
product σ-algebras G1 := F2 ⊗ F3, G2 := F1 ⊗ F3 and G3 := F1 ⊗ F2, and let us further assume the
existence of three probability measures Pi, defined on Gi (i = 1, 2, 3) such that

|EP3 [X1X2]− EP2 [X1X3]| > 1− EP1 [X2 X3] .
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Then the conclusion would be that there cannot exist a “superior” probability measure P on the mea-
surable space (Ω1 × Ω2 × Ω3,F1 ⊗ F2 ⊗ F3) such that for all i ∈ {1, 2, 3} and for any A ∈ Gi we have
P(A × Ωi) = Pi. In other words, there cannot exist a joint distribution function of the random vector
(X1, X2, X3) whose bivariate marginals are given by the three Pi s ! This fact reflects a link between
BCHSH inequalities and the question whether there exist joint distributions with given multivariate
marginals, known as the “Marginal Problem” – which already is revealed in classical commutative proba-
bility theory in the sense of Kolmogorov (cf. Theorem 1.27 in [L. Rüschendorf, Mathematical risk analysis.
Dependence, risk bounds, optimal allocations and portfolios. Berlin: Springer (2013; Zbl 1266.91001)]).
As it is well-known from quantum mechanics and quantum information such a violation of the BCHSH
inequality can be explicitly realised in form of laboratory experiments (induced by entangled pure spin
states in composite quantum systems), implying that in general a probabilistic interpretation of quantum
states in the sense of Kolmogorov is not well-defined due to the existence of incompatible observables
(i.e., physical objects which cannot be measured simultaneously). In particular, due to the existence of
incompatible (non-commuting) observables there is no direct analogue of conditional probability in the
sense of Kolmogorov (since there is no commutative “AND” conjunction of these observables). Moreover,
as sketched above there does not exist a “superior” multivariate distribution function, implying that one
cannot look for a single probability measure in the sense of Kolmogorov to calculate the probability of a
simultaneous measurement of two incompatible observables.
We should also mention an important characterisation of arbitrary quantum probability measures, known
as Gleason’s Theorem (cf. [A. M. Gleason, J. Math. Mech. 6, 885–893 (1957; Zbl 0078.28803)] and [V.
Moretti, Spectral theory and quantum mechanics. With an introduction to the algebraic formulation.
Translated by Simon G. Chiossi. Translated and extended edition of the 2010 Italian original. Milano:
Springer (2013; Zbl 1365.81001)]):
Gleason’s Theorem. Let H be a complex Hilbert space which is either of finite dimension ≥ 3 or
infinite-dimensional and separable. If T ∈ D ∈ N (H) is a positive (self-adjoint) nuclear operator such
that N(D) = 1 = tr(D) then P 7→ tr(TP ) defines a quantum probability measure on the set of all
orthogonal projectons on H. Conversely, for any quantum probability measure µ there exists a unique
positive nuclear operator D ∈ N (H) such that N(D) = 1 = tr(D) and

µ(P ) = tr(PD)

for all orthogonal projectons in the class L(H) of all bounded linear operators on H.
The normalised nuclear positive operator D is known as “density matrix” (which could be viewed as
the non-commutative generalisation of the Radon-Nikodym derivative in classical measure theory). To
understand the latter notation let us recall that from Banach space theory we know that every normal
state (i.e., every weak-∗ continuous positive linear form of norm one) φ on the von Neumann algebra
L(H) =̃ (H∗ ⊗̃πH)∗ =̃N (H)∗ in fact is completely characterised by φ = tr(·D) for a unique nuclear
positive operator D, satisfying tr(D) = 1 = N(D) (cf. e.g. [H. Araki, Mathematical theory of quantum
fields. Transl. from the Japanese by Ursula Carow-Watamura. Oxford: Oxford University Press (1999; Zbl
0998.81501)] and [B. Blackadar, Operator algebras. Theory of C∗-algebras and von Neumann algebras.
Berlin: Springer (2006; Zbl 1092.46003)]).
Here, one should be aware that not only the interpretation of quantum mechanics but also the presentation
of the mathematical formalism shows a somewhat confusing variation in the comprehensive literature
including the construction of analogies between objects from quantum probability theory and objects
from Kolmogorovian probability theory. For example, one can find descriptions of the mathematical
formalism of quantum mechanics in form of wave functions, projection valued measures (PVMs), positive
operator valued measures (POVMs), projection lattices and von Neumann algebras including non-trivial
relations between these model constructions and their physical interpretation; particularly with a view
towards the fields of quantum information and algebraic quantum field theory.
In any case, since any Kolmogorovian probability space (Ω,F ,P) in particular is a σ-finite regular measure
space, it is completely encoded in the commutative von Neumann algebra L∞(Ω,F ,P) 1

↪→L
(
L2(Ω,F ,P)

)
,

where a normal state corresponds to the Radon-Nikodym derivative of a probability measure which is
absolutely continuous with respect to the given probability measure P. Hence, one generalised probability
space model (which includes the commutative Kolmogorovian model) is then given by (A, φ), consisting
of a von Neumann algebra A and a normal state φ = tr(·Dφ) on A (cf. e.g. [M. Rédei and S. J. Summers,
Stud. Hist. Philos. Sci., Part B, Stud. Hist. Philos. Mod. Phys. 38, No. 2, 390–417 (2007; Zbl 1223.46058)]).
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The BCHSH inequality, transferred to this generalised probability space model primarily reads as follows:

Generalised BCHSH Inequality. Let A 1
↪→L(H) and B 1

↪→L(H) be two C∗-algebras. Let φ be an
arbitrary state on L(H). If A or B is commutative then

|φ(A(B −B′))| ≤ 1− φ(BB′)

for all A ∈ A, B,B′ ∈ B, satisfying −1A ≤ A ≤ 1A and −1B ≤ B,B′ ≤ 1B. Moreover,

|φ(A(B −B′)) + φ(A′(B +B′))| ≤ 2 .

for all A,A′ ∈ A, B,B′ ∈ B, satisfying −1A ≤ A,A′ ≤ 1A and −1B ≤ B,B′ ≤ 1B.
To complete the bridge to the paper under review let us quickly recall the fundamental notion of an
entangled state. In general, composite quantum systems are modelled as completed minimal (or spatial,
respectively injective operator space) tensor products of von Neumann algebras, making them again a
von Neumann algebra. A normal state on such a tensor product (or equivalently, a density matrix) is
separable (or decomposable) if it is a limit point of the convex hull of product normal states. Otherwise
it is called entangled state (cf. also [A. W. Majewski, Open Syst. Inf. Dyn. 6, No. 1, 79–86 (1999; Zbl
0932.46069)]). Pure (and hence normal) states on tensor products of von Neumann algebras are separable
if and only if their density matrix can be written as a canonical tensor product of all “marginal” density
matrices, where each of these marginal density matrices corresponds to a pure state on the respective
component of the tensor product of the von Neumann algebra. Here, it is worth to recall the following
version of a crucial result reflecting the impact of non-commutativity in composite quantum systems (cf.
[B. Blackadar, Operator algebras. Theory of C∗-algebras and von Neumann algebras. Berlin: Springer
(2006; Zbl 1092.46003)], [N. P. Landsman, Stud. Hist. Philos. Sci., Part B, Stud. Hist. Philos. Mod. Phys.
37, No. 1, 212–242 (2006; Zbl 1222.81072)] and [G. A. Raggio, Lett. Math. Phys. 15, No. 1, 27–29 (1988;
Zbl 0659.46061)]):
Theorem. Let A and B be two von Neumann algebras. Then the following statements on the minimal
tensor product A⊗min B are equivalent:

(i) Each normal state on A⊗min B is separable.

(ii) A or B is commutative.

(iii) The state space of A or B is a simplex.

(iv) The positive elements in A or B constitute a lattice.

(v) Each normal state on A⊗min B satisfies the generalised BCHSH Inequality.
Consequently, the existence of normal entangled states on A ⊗min B necessarily implies that both von
Neumann algebras, A and B have to be non-commutative. However, there are entangled states for which
the BCHSH inequalities still hold.
The authors of the paper under review contribute to the highly vibrating investigation of the different
types of correlation in quantum mechanics (and quantum information). By analysing thoroughly proper-
ties of a class of Bell violating (and hence entangled) states which allow a so called quantum steering (cf.
[E. Schrödinger, Proc. Camb. Philos. Soc. 31, 555–563 (1935; Zbl 0012.42702); ibid. 32, 446–452 (1936;
Zbl 0015.04403)] and [D. Cavalcanti and P. Skrzypczyk, “Quantum steering: a short review with focus on
semidefinite programming”, Preprint, arXiv:1604.00501]) they exceed classical dependence modelling
in Kolmogorovian probability theory, too. Given a bipartite scenario, quantum steering refers to the fact
that one of the two measuring parties (Alice and Bob, say) already can change the state of the other
just by applying local measurements. In [H. M. Wiseman et al., Phys. Rev. Lett. 98, No. 14, Article ID
140402, 4 p. (2007; Zbl 1228.81078)] quantum steering is formally described in terms of an incompatibility
of quantum mechanical predictions with a locally hidden state (LHS) model, where pre-determined (i.e.,
locally hidden) states are sent to the parties. Furthermore, quantum steering can also be seen as entan-
glement detection. In general, it is well-known that for mixed states, Bell violation is strictly stronger
than steering which, in turn, is strictly stronger than entanglement.
A deviation from a LHS description is quantified by a violation of the quantum steering inequality for
steering functionals – similarly to the violation of the BCHSH inequalities, where the latter quantifies
the deviation from the commutative Kolmogorovian LHV case (a detailed introduction to the subject
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of steering inequalities and steering functionals is described in the companion paper [the authors et al.,
“Unbounded violation of quantum steering inequalities”, Phys. Rev. Lett. 115, No. 17, Article ID 170401,
5 p. (2015; doi:10.1103/PhysRevLett.115.170401)]). In general, it is rather complicated to compute
the violation for a given steering functional analytically. One usually uses semi-definite programming
(cf. e.g. [D. Cavalcanti and P. Skrzypczyk, “Quantum steering: a short review with focus on semidefi-
nite programming”, arXiv:1604.00501]). Instead of applying the latter method the authors apply deep
methods from the theory of operator spaces including tensor products of Banach and operator spaces,
allowing them to construct a sequence of steering functionals which is of unbounded largest violation in
the following sense: for any n ∈ N there is a steering functional Fn (which is identified with an element in
a suitable tensor product encoding the quantum mechanical nature of the steering) such that the largest
quantum violation of steering inequality for Fn exceeds the number K

√
n√

ln(n)
, where the constant K > 0

does not depend on n. A concrete example of such a sequence (Fn) of unbounded largest violation is
constructed; yet with large probability (in the sense of Kolmogorov) only – confirmed explicitly by the
authors in Remark 2.13. To this end, the authors transfer the operator space approach of [M. Junge et
al., Commun. Math. Phys. 300, No. 3, 715–739 (2010; Zbl 1211.46068); ibid. 306, No. 3, 695–746 (2011;
Zbl 1230.81011)] to their investigation of the violation of steering inequalities. In the latter two papers
operator space theory is used to analyse a violation of the BCHSH inequalities.

Reviewer: Frank Oertel (London)
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